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1 Introduction

While exoskeleton assistance strategies have been explored
for decades, devices that can reduce the metabolic cost of
walking are relatively new [1]. Many of the current strate-
gies use autonomous hardware and controllers specific to the
hardware rather than the subject. Our lab uses an emulator
system with lightweight end-effectors [2] and off-board mo-
tors and control hardware [3]. With this hardware, we can test
a wide variety of control strategies over the course of a single
experiment and can customize the assistance to the user.

Customization can be achieved through different protocols.
Hand-tuning or parameter sweeps [4] will give an idea of
helpful assistance strategies, subject to the step size of the
parameters. Body-in-the-loop strategies [5] measure human
output and adjust device parameters in response.

2 Human-in-the-Loop Optimization Strategy: CMA-ES

We have shown success of a human-in-the-loop optimization
strategy that determines customized assistance torque profiles
which decrease the metabolic cost of walking [6]. Subjects
walked with a unilateral ankle exoskeleton and experienced
different control strategies which were optimized using an
evolutionary algorithm called Covariance Matrix Adaptation
Evolution Strategy (CMA-ES). For a predetermined param-
eterization of the space of possible controllers, several con-
trollers are sampled in a single “generation” and are applied
to the user. Metabolic measurements are estimated after two
minutes [7] and are used to determine a rank ordering of the
different controllers. This order is then used to define a new
distribution of the control space, from which the next gener-
ation is sampled. After an hour of walking, subjects undergo
validation trials to determine the metabolic cost of walking
with the optimized assistance relative to a zero torque mode
and a static controller [4]. The metabolic reductions in this
study are the largest to date.

3 Understanding the Success of CMA-ES

We hypothesize that there are three main contributors to the
success of our human-in-the-loop optimization scheme. The
participant is first subjected to a wide range of control trajec-
tories, which may be far from the optimized trajectory. The
optimization algorithm then converges on an optimized tra-
jectory. The optimized trajectories varied between subjects,

suggesting a benefit from customization of the controller. The
torque profiles for all of the subjects in this experiment con-
verged to large peak torques, which indicates that there is a
general benefit from large assistive torques. Thus, there are
contributions from generalized assistance from the device, the
customization of the optimized trajectory, and the initial gen-
eration which exposes the subject to a wide range of control
strategies.

We propose an experiment to understand the roles of learning
and customization in the optimization procedure. Subjects
with no exposure to walking with an exoskeleton will first
walk in the validation conditions of the original study: walk-
ing with normal shoes, walking with the exoskeleton on the
user but with zero torque, and walking with the average as-
sistance. Each subject will then undergo the optimization as
in the prior experiment and will repeat the validation with the
customized assistance as another condition.

The comparison between the average assistance before and
after the optimization protocol will allow us to understand the
effect of the optimization on the adaptation of the user. The
comparison between the average control and the customized
control will then lend insight into the role of customization
of the assistance strategy. We are beginning tests soon and
hope to have interesting results to discuss at the conference
this summer.
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